
Automatic Test Generation
for Haskell Programming Assignments

Vladimír Štill
Faculty of Informatics, Masaryk University

Czech Republic
xstill@mail.muni.cz

ABSTRACT
Automatic testing of programming assignments is highly desir-
able as it can provide fast feedback for the students and allows the
teachers to teach efficiently even in courses with many students.
However, writing tests for students’ solutions can be tedious. In
this work, we present a novel approach to test generation for small
Haskell assignments. Such assignments usually consist of one func-
tion (with the possibility to use helper functions in its definition)
that the students are supposed to program according to a teacher’s
specification. The teacher is not required to write tests for this
function. Instead, we make use of an example solution, which the
teacher should have to assess the difficulty of the assignment. Using
the example solution, and (if needed) a specification of input values
for the function, our tool can automatically generate randomized
tests. If these tests fail, the student is presented with a counterex-
ample which shows the input values, the expected output of the
tested function and the output computed by their solution.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
programming education, automatic testing, Haskell, QuickCheck

ACM Reference Format:
Vladimír Štill. 2020. Automatic Test Generation for Haskell Programming
Assignments. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’20), June 15–19, 2020,
Trondheim, Norway. ACM, New York, NY, USA, 1 page. https://doi.org/10.
1145/3341525.3393972

1 TESTING CAPABILITIES
Our tool hsExprTest is based on QuickCheck [2], a Haskell tool for
specification-based testing of Haskell programs. It uses QuickCheck
for automatic generation of test inputs, and to shrink test inputs,
which allows us to produce small counterexamples. It also uses
QuickCheck’s ability to generate printable and shrinkable func-
tions [1], which is used when testing implementations of higher-
order functions (i.e., functions which take functions as arguments,
for example, a map function, which takes a function and applies it
to each element of a list, producing a list of results).

ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the 2020
ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE
’20), June 15–19, 2020, Trondheim, Norway, https://doi.org/10.1145/3341525.3393972.

However, unlike QuickCheck, hsExprTest uses the teacher’s so-
lution as a specification and automatically derives a test expres-
sion which compares the teacher’s and student’s solutions. The
expression generation is driven by the type of teacher’s solution
(and optionally also input specification). It can include specializa-
tion of polymorphic functions and wrapping of inputs for higher-
order functions in such a way they can be displayed and shrunk by
QuickCheck.

For the simplest exercise functions (i.e. total functions operating
on basic Haskell data types like numbers, lists, tuples, and functions
over these types), our tool can generate tests just from the solution.
For more complex input data, it is necessary to either constrain
inputs (for example to positive numbers, or to a specific range) or
to provide means of generation of random inputs. Input data gen-
erators for custom data types can be written using the QuickCheck
library. Finally, to accommodate more complex exercises within the
same framework, it is also possible to write custom QuickCheck
tests.

2 USAGE AND AVAILABILITY
Our tool is open source and available on GitHub, at https://github.
com/vlstill/hsExprTest. The documentation for testing Haskell can
be found at https://github.com/vlstill/hsExprTest/tree/master/doc/
hs.md. The tool is used in the introductory course to functional
programming at the Faculty of Informatics of Masaryk University
since 2014 and is continually being improved. While the tool is
integrated with the Information System of Masaryk University,
which is used to submit assignments and present results to students,
it is also possible to use it with different submission frontends.

3 GOALS OF THE POSTER
The poster aims to present our novel testing method which sim-
plifies testing of small Haskell programming exercises. We believe
that by making testing easier, we can promote the creation of more
and better exercises which students can use to improve their new
skills. The poster could also spark a broader conversation about
methods used in programming courses.

REFERENCES
[1] Koen Claessen. 2012. Shrinking and Showing Functions: (Functional Pearl). In

Proceedings of the 2012 Haskell Symposium (Copenhagen, Denmark) (Haskell ’12).
Association for Computing Machinery, New York, NY, USA, 73–80. https://doi.
org/10.1145/2364506.2364516

[2] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. Proceedings of the ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP 46 (01 2000). https:
//doi.org/10.1145/1988042.1988046

https://doi.org/10.1145/3341525.3393972
https://doi.org/10.1145/3341525.3393972
https://doi.org/10.1145/3341525.3393972
https://github.com/vlstill/hsExprTest
https://github.com/vlstill/hsExprTest
https://github.com/vlstill/hsExprTest/tree/master/doc/hs.md
https://github.com/vlstill/hsExprTest/tree/master/doc/hs.md
https://doi.org/10.1145/2364506.2364516
https://doi.org/10.1145/2364506.2364516
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046

	Abstract
	1 Testing Capabilities
	2 Usage and Availability
	3 Goals of the Poster
	References

