
Local Nontermination Detection
for Parallel C++ Programs?

Vladimı́r Štill and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic
divine@fi.muni.cz

Abstract. One of the key problems with parallel programs is ensuring
that they do not hang or wait indefinitely – i.e. there are no deadlocks,
livelocks and the program proceeds towards its goals. In this work, we
present a practical approach to detection of nonterminating sections of
programs written in C or C++, and its implementation into the DI-
VINE model checker. This complements the existing techniques for find-
ing safety violations such as assertion failures and memory errors. Our
approach makes it possible to detect partial deadlocks and livelocks, i.e.
those situations in which some of the threads are progressing normally
while the others are waiting indefinitely. The approach is also applica-
ble to programs that do not terminate (such as daemons with infinite
control loops) as it can be configured to check only for termination of
selected sections of the program. The termination criteria can be user-
provided; however, DIVINE comes with the set of built-in termination
criteria suited for the analysis of programs with mutexes and other com-
mon synchronisation primitives.

1 Introduction

Assessing correctness of parallel programs is a hard task even for experienced
programmers. Therefore, the standard program development includes a bunch of
quality assurance activities such as testing. Unfortunately, the nondeterministic
nature of thread scheduling and concurrency makes it quite hard for testing
to achieve good guarantees of quality in the case of parallel programs. Formal
methods, on the other hand, provide a more systematic approach and in some
cases may even prove the absence of erroneous behaviours. However, they are not
used very often in practice due to the extra effort required for their application
or simply because they are not powerful enough to handle the overall complexity
and size of real-world programs. Nevertheless, continuous improvement in formal
methods is desirable to cover the corner cases of their use and to allow them to
become more usable in software development.

Especially beneficial techniques are those that can be directly applied to
programs written in mainstream programming languages. Such techniques sig-
nificantly lower the barrier towards their usage by programmers. However, the

? This work has been partially supported by the Czech Science Foundation grant
No. 18-02177S.

// can be used for synchronization

std::atomic< int > x = 0;

void worker() {

while (x != 0) { } // wait

do_work();

}

int main() {

// start thread running worker

std::thread t(worker);

x = 42; // let worker run

// ...

t.join();

}

Fig. 1. A simple C++ code snippet with two threads, it uses C++ standard threading
support and atomic variables. A programmer’s intention was that the worker function
first waits until x becomes non-zero, and then proceeds with do work. However, the
waiting condition (at the first line of the worker function) is incorrectly just the oppo-
site. Therefore, if main executes x = 42 before waiting in worker starts, the wait will
never end (assuming x is never set to 0 again). Note that none of safety checks is able
to detect that the program might hang. For the rest of the paper, we will omit the
std:: namespace to simplify the notation.

development of these techniques is extremely demanding due to numerous spe-
cific features the real-world programming languages exhibit. As a result, many
techniques introduced and implemented stay at the level of prototypes without
being mature enough to be applicable outside the scientific community – e.g.,
they might be missing features such as pointer arithmetic, functionality of the
standard libraries or the concept of exceptions. See Software-Verification Com-
petition (SV-COMP) [6], to find some examples of tools aiming at verification
of real-world programs written in C.

A significant limitation of many existing tools for analysis of parallel pro-
grams in programming languages such as C and C++ is that they are only
concerned with safety checking – they check that a bad state of the program
is unreachable. Most common examples of bad states include assertion failures
and memory errors (such as invalid memory accesses and memory leaks). Unfor-
tunately, this is far from being sufficient in practice. See, for example, the code
given in Figure 1. That piece of code easily passes any safety checks; however,
when executed in reality, it often hangs and does not terminate.

In this paper, we report about our new technique for checking nontermination
for parallel programs written in C and C++ that may be applied to programs
with arbitrary synchronisation primitives. In particular, we can check that a
specified part of a program finishes whenever its execution has been started,
which in turn enables us to check for problems such as partial deadlocks or local
nontermination. Note that our technique does not require the program under
analysis to terminate at all. Therefore, it is also applicable to programs that do
not terminate but have some parts that are supposed to finish. It does; however,
require that the program has a finite state space because our technique is built
on top of a state space exploration. Note that even for a finite state space, a
program may exhibit infinite behaviour.

The main observation is that a program often has sections which once entered
should also be left: for example critical sections, certain function calls (such as a
pop from a queue, which can wait for an element to become available; or a thread
join, etc.), or parts of code which wait for a resource or an action (waiting for a
mutex, waiting on a barrier, waiting until a variable is set to a given value). If
the analysis of the program focuses on such sections, it is possible to detect when
these sections are started, but do not terminate. This covers partial deadlock and
partial livelock detection in which such sections participate. We also provide a
global nontermination detection mode that decides if the program as a whole
terminates, nevertheless this is not the primary goal of our approach.

Our technique is built on top of explicit-state model checking. We believe
that while explicit-state model checking is prone to state space explosion, it is
well suited for the detection of problems related to infinite runs of parallel pro-
grams which cannot be handled by techniques such as bounded model checking
or stateless model checking. While our approach is closely related to checking for
properties written in temporal logic such as LTL or CTL*, our local nontermina-
tion technique cannot be substituted equivalently with CTL* model checking.
One of the reasons is that these logics are unable to relate to entities which
are dynamically created during the execution of the program, and there is no
bound to their number. For example, there is no way to express in CTL* that
for all mutexes it holds that if they are locked, they are also eventually unlocked
unless all the mutexes are enumerated beforehand. This is an essential concern
for realistic programs where mutexes and other synchronisation primitives can
be created dynamically at runtime, and their number can depend on the com-
putation of the program itself. Furthermore, to avoid counterexamples which
are unrealistic with practical thread schedulers, we need a form of fairness of
process scheduling different from fairness constraints used typically with LTL
model checking.

The approach described in this paper is implemented in a modified version
of the DIVINE model checker [3, 13]. The implementation, as well as all the
examples, can be found on the paper webpage1.

The rest of the paper is structured as follows: Section 2 gives a short overview
of related work and Section 3 gives definitions and preliminaries needed for the
rest of the work. In Section 4 we define our local nontermination property, in
Section 5 we discuss how it can be checked and the implementation in DIVINE,
and it Section 6 we evaluate it. Finally, Section 7 concludes this work.

2 Related Work

For related work, we consider only results which go beyond safety checking. There
are many approaches to find problems such as assertion violations or memory
safety violations, but they are fundamentally limited to properties concerning
finite runs of the program, and we are focusing here on infinite behaviour, namely

1 https://divine.fi.muni.cz/2019/lnterm/

absence of termination. Similarly, we do not mention techniques which specialise
on checking sequential programs and have no support for parallelism, as well
as techniques which are tailored to specific modelling language and cannot be
applied in general.

Several techniques for checking properties other than safety exist – indeed
usage of various temporal logics, such as Linear Temporal Logic (LTL) [2, Chap-
ter 5] and Computation Tree Logic (CTL) [2, Chapter 6] in the context of model
checking dates way back to the beginning of research in formal methods. Unfor-
tunately, these are not often applied to programs written in real-world program-
ming languages such as C and C++.

As for techniques which detect nontermination, both static and dynamic tech-
niques exist for detecting deadlocks caused by circular waiting for mutexes [7,
1, 5]. However, these techniques specialise on mutexes and do not allow general
nontermination detection, and it is unlikely that they could be naturally ex-
tended to cover it. There are also techniques that detect deadlocks of the whole
program (i.e., a program state from which the program cannot move) [8, 9], but
these techniques cannot find cases in which only some threads of the program
are making progress, while other threads are blocked forever. Also, these global
deadlock detection techniques are inadequate in the presence of synchronisation
which causes busy waiting instead of blocking (for example spin locks) or in
the cases when normally blocking operations are implemented using busy wait-
ing (which can be easier to handle for the verifier in some cases). A somewhat
different approach based on communicating channels is proposed in [11], but
this approach is aiming at the Go programming language which primarily uses
shared channels for communication between threads. Overall, neither of these
techniques is applicable in general for detection of nontermination in programs
which use a combination of synchronisation primitives in shared memory.

3 Preliminaries

In this section, we shortly describe necessary details about representation of
programs, their state space, and resource sections so that we can define local
nontermination.

3.1 State Space of a Program

The state space of a program is a directed multigraph with labelled edges. The
vertices of the state space multigraph are called states (of the program). Each
state represents a snapshot of the program (its memory, program counters, . . .).
States v1, v2 are connected by an edge in the state space if v2 can be reached
from v1 in an atomic step, which is a sequence of instructions that executes at
most one action which can interfere with any action executed in parallel with
it. In DIVINE, the state space generator attempts to make the longest possible
atomic step while ensuring that the generation of the edge terminates. Edges
are labelled, and the labels can be used to indicate accepting edges and error

edges. Error edges are edges on which safety violation occurs (e.g., an assertion
violation or memory error). The notion of accepting edges was taken initially
from transition-based Büchi automata and used for LTL model checking, but in
general, it is a way to mark an edge as interesting for the verification algorithm,
but not erroneous. These labels are set by the verified program, which can be
instrumented to influence edge labelling or by DIVINE when it detects an error.

The state space of a program can be an infinite graph. However, in DIVINE,
we are primarily concerned with programs which have finite state space. If the
state space is infinite, DIVINE might find an error if it is present there, or it might
compute until its resources are exhausted. Please note that programs with finite
state space can have infinite behaviour as they can loop through the same set of
states indefinitely.

3.2 Resource Sections

A resource section of a program is a block of code with an identifier of a resource
and type of the resource section. Each resource section is delimited in the source
code by section start and section end annotations. Examples of such sections
are a mutex-waiting section that denotes a block of code in which a thread is
waiting for the acquisition of a mutex. Mutex-waiting section is identified by
a mutex and the thread which waits for it. Another example can be a critical
section, which is identified by a mutex (there is no need to use thread for the
identification, as a mutex can be owned by at most one thread at any point
in time). Resource section can also be bound to a function – in this case, it is
identified by the stack frame of the function and by the program counter of its
beginning. Regardless of the identification, the idea for a resource section is that
once it is entered, it should also be exited.

As a resource section can be entered repeatedly (for example when it is
on a cycle or in a function which is called multiple times) we will define a
resource section instance to be a particular execution of a resource section with
the given identifier. The author of annotations which define resource sections
should ensure that the same resource section is not entered again before it is
left. Please note that this does not limit the usage of function-associated resource
sections to non-recursive functions – each such section is also identified by the
stack frame, and therefore resource sections corresponding to different recursion
depths are different resource sections. Similarly, a program can be in multiple
resource sections which wait for the same mutex at the same time, each of them
corresponding to a different waiting thread.

4 Local Nontermination

With our local nontermination property, we aim at detection of resource section
instances which are entered but are never left – nonterminating resource section
instances. We will first use examples of terminating and nonterminating resource
section instances, and then we will define them precisely.

mutex m;

void thread0() {

unique_lock lock(m); // Error

while (true) {

do_work();

}

} // unlock

void thread1() {

while (true) {

unique_lock lock(m);

do_other_work();

} // unlock

}

Fig. 2. A program with nonterminating
critical section (in thread0) and a dead-
lock (if thread0 enters its critical sec-
tion, thread1 will wait infinitely). Please
note that in C++ it is possible to use
scope-based locks: the critical section be-
longing to mutex m is entered when
unique_lock lock(m) is executed and left
at the end of the scope in which the
lock variable was defined (at the match-
ing curly brace; also marked with comment
// unlock).

mutex m;

void thread0() {

while (true) {

unique_lock lock(m); // Fixed

do_work();

} // unlock

}

void thread1() {

while (true) {

unique_lock lock(m);

do_other_work();

} // unlock

}

Fig. 3. A fixed version of the program from
Figure 2 (the start of the critical section
was moved from the position // Error in
the left code to // Fixed and therefore the
critical section can end now). Intuitively,
each critical section in this program termi-
nates. However, as we can see in Figure 4,
it is possible to find an infinite path in the
state space of this program that infinitely
waits for one of the critical sections. To
make matters worse, this path can respect
weak fairness.

0: lock(m) 1: wait(m) 0: unlock(m)

0: do work()0: lock(m)

1: lock(m)

Fig. 4. A fragment of state space of program in Figure 3 with starving lasso marked
with bold edges. Each edge is marked by the thread it belongs to and the action of
this thread. Furthermore, to ease the orientation, actions belonging to thread0 are
marked with continuous red edges while actions belonging to thread1 are marked with
dashed blue edges. We can see that both threads participate in the repeated part of
the counterexample and thread0 is denied the possibility (starves) to execute after
0: unlock(m) (the thin blue dashed edge).

A simple example can be seen in Figure 2. There we have a mutex which
is locked, but never unlocked as the corresponding critical section contains an
infinite loop. We have four different resource sections in this example. Two of
them corresponds to the critical sections guarded by the mutex, and two of
them are hidden inside unique lock, where they implement waiting until the
mutex is unlocked. Nonterminating resource section instances are the instances
corresponding to the critical section in thread0 and any instances corresponding
to waiting for mutex in thread1 which is executed after the critical section in
thread0 is entered. We can fix this example by putting the critical section in
thread0 inside the infinite loop, as shown in Figure 3.

Suppose that we have defined nonterminating section as one in which it
is possible to stay indefinitely (i.e., for the specific case of waiting for m in
thread1, termination could be expressed by LTL formula G(wait-m-t1-start =⇒
F wait-m-t1-end)). We can witness the existence of such nonterminating section
in a program with a finite state space by a lasso-shaped path. Such the nonter-
mination witness can also be found for the program in Figure 3, even though
the code might intuitively seem to terminate. First thread0 executes its lock

action, then thread1 starts waiting. If thread0 always executes unlock and
lock before thread1 is allowed to run, thread1 will never be able to finish wait-
ing. The counterexample is illustrated in Figure 4 and is valid also under weak
fairness assumptions.

In general, if a thread waits for some condition which is both infinitely often
true and infinitely often false, there can be a run in which the waiting thread is
only allowed to run at those moments when the condition is false. This type of
run is present in any program that uses busy waiting, which is very common in
practice. For this practical reason, we cannot rely on the definition of nontermi-
nation as expressed with the LTL formula above, and we need a different way
to describe nontermination sections.

Definition 1 (Nonterminating resource section instance). A resource
section instance is nonterminating if and only if it can reach a point from which
it is not possible to reach its end.

For a particular resource section (e.g., again waiting for m in thread1), check-
ing for absence of nonterminating resource section instances can be expressed
using a CTL* property

AG (wait-m-t1-start =⇒ A[(EF wait-m-t1-end) W wait-m-t1-end])

(where W is the weak until operator).

In general, the CTL* approach cannot be used, as it requires the set of
resource sections to be known before the analysis starts, so that the formula can
be created as a conjunction of formulas for each resource section. This is hard to
do if resource sections can be created at runtime, which is often the case when
dealing with programs in languages such as C and C++.

mutex m1, m2;

{

unique_lock l1(m1);

do_work_1();

{

unique_lock l2(m2);

do_work_2();

} // unlock(m2)

} // unlock(m1)

ARSI

ARSI

lock(m1) lock(m1)

do work 1

lock(m2)

do work 2

unlock(m2)

unlock(m1)

do work 1

lock(m2)

do work 2

unlock(m2)

unlock(m1)

end

lock(m2)

do work 2

unlock(m2)

Fig. 5. A small example of a program with two resource section instances (on the left-
hand side) and its state space, which shows active resource section instances (ARSIs; on
the right-hand side). The resource section instances belonging to the critical section of
mutex m1 are wrapped in a solid rectangle in the image, while resource section instances
belonging to m2 are wrapped in a dashed rectangle. Active resource section instances are
denoted by thick frame and yellow background and accepting edges in the state space
are marked by thick arcs. Please recall that active resource section instances cannot be
nested. Crosses at the end of edges denote points where exploration of the state space
was terminated due to reaching the end of an active resource section instance.

5 Detection of Nontermination

The detection of nonterminating resource section instances in the context of
explicit-state model checking proceeds as follows. The basic idea behind the de-
tection of nonterminating resource section instances is that the model checker
focuses on them one at a time. Every time a resource section instance is about
to be entered during the state space exploration, the algorithm introduces a
nondeterministic branching to the state space graph. In one branch the resource
section instance remains inactive, in which case the state space exploration pro-
ceeds as usual to discover other resource sections. However, in the other branch,
the instance becomes active. Under this branch the resource section instance
is checked for being nonterminating. Note that the nondeterministic branching
happens only outside of active resource sections, which means the active resource
section instances (ARSIs) cannot be nested. Once the state space graph in the

active branch reaches a state that is out of the scope of an ARSI, the state space
exploration within this branch is stopped (a state with no successors is generated
outside the ARSI). Active resource section instances cannot be nested, but for
any instance of a resource section nested in an active section instance, there is
also an instance which is nested in an inactive section instance, and therefore
can become active elsewhere in the state space. As a result of this construc-
tion, for every nonterminating resource section in the original program, there is
a corresponding ARSI in the augmented state space graph. To let exploration
algorithm know that it is exploring a part of the state space that is within an
ARSI, we mark all edges within ARSIs as accepting. An illustration of a state
space graph augmented with the nondeterministic choices is given in Figure 5.
Now to discover ARSIs which are nonterminating according to Definition 1, it
is enough to detect terminal strongly connected components made of accepting
edges only.

5.1 Detection Algorithm

Henceforward, we assume the state space graph is finite, and if the program to be
verified terminates then this fact is reflected with a state with no successors in the
underlying state space graph. Note that the program may terminate even within
a resource section instance. An ARSI terminates either by reaching the end of the
section instance, or by the termination of the whole underlying program. In both
cases, this means a state with no successors is generated and reachable from the
ARSI entrance point. As a result, the detection of nonterminating ARSIs can be
performed as a search for an accepting terminal strongly connected components
in the state space graph.

Definition 2 (Terminal Strongly Connected Component). A strongly
connected component S is terminal2 if for each state v in S all successors of
v are in S (there are no edges out of S).

Definition 3 (Fully Accepting Terminal SCC). A terminal strongly con-
nected component of the state space is fully accepting (fully accepting terminal
SCC, or FATSCC) if and only if it is nontrivial and all its edges are accepting.

Theorem 1. A program contains a nonterminating resource section instance
if and only if its state space graph contains a fully accepting terminal strongly
connected component.

Proof. Assume the program contains a nonterminating ARSIA. Then there must
exist a set of states in A from which neither program end nor the corresponding
resource section end can be reached. Among these states, there must be a subset
which can be repeated indefinitely and cannot be left – a nontrivial terminal
SCC which is part of an ARSI and therefore it is fully accepting – a FATSCC
in the state space.

2 Also sometimes called bottom strongly connected components, or closed communi-
cating classes, especially in the area of probabilistic system analysis [12].

For the other direction let us assume that there is an FATSCC in the state
space graph. Since any edge which enters or leaves an ARSI is not accepting
(which follows directly from the construction of the state space graph), all states
that are part of the FATSCC must be states within a single ARSI. Since the
component is terminal and non-trivial, it is impossible to reach either program
termination point or a state that would be outside of the resource section in-
stance, therefore, the FATSCC witnesses a resource section instance that does
not terminate. ut

To detect the presence of a FATSCC in the state space graph we employ
the standard Tarjan’s algorithm for finding strongly connected components. To
detect if a terminal component is nontrivial and fully accepting it is enough to
check that the component contains at least one state with some successors (it
is nontrivial) and that all states of the component have only accepting outgoing
edges (it is fully accepting), which is just a minor modification of the algorithm.

Note that it is also possible to define global nontermination using Definition 1.
In this case we only need to treat the whole program as a single active resource
section instance.

5.2 Scheduling and Fairness

To provide further context, we also want to discuss the relation of our nonter-
mination property to LTL model checking with fairness. Fairness constraints [2,
Chapter 3.5] are needed in analysis of temporal properties of parallel systems to
avoid reporting of unrealistic counterexamples, such as those in which an enabled
thread never gets the chance to make an action. Basically, even if we use LTL for-
mula to describe nontermination and allow for LTL model checking under weak
fairness, we still may obtain counterexamples that are totally unrealistic. This is
because a weakly-fair scheduler3 admits runs in which the context switches that
happen among participating threads are very regular, hence unrealistic.

The nontermination as defined in Definition 1 can be seen as a manifestation
of an additional assumption about the thread scheduler. It claims that the sched-
uler is in the essence somehow irregular, i.e., it will not allow for a context switch
always after a fixed number of instructions or at a specific location in the code.
Another way of looking at this is to assume that the scheduler is probabilistic
and assigns some non-zero probability to interruption between any two instruc-
tions. With a probabilistic scheduler, we can equivalently define nonterminating
resource section instance as a section instance which can get to the point when
there is zero probability of reaching its end. Under the probabilistic view we

3 For our purposes, a weakly-fair scheduler is a scheduler which ensures that on every
accepting cycle in the state space all threads which existed during the execution of
this cycle were also executed at least once on the cycle. To make sure this definition
of fair scheduler provides reasonable semantics, we further require that threads do
not block (they can, however, exit). This is not a problem in practice as any blocking
synchronisation (such as waiting for a mutex) can be simulated by a busy waiting
loop.

can also say that programs we denote as correct, i.e., without nonterminating
sections, have zero probability of looping forever.

5.3 Implementation and Usage

We have implemented our nontermination detection approach in a branch of
the DIVINE model checker. Resource sections can be specified by annotating the
source code of the program to be analysed by the user of the tool. Further-
more, DIVINE provides predefined resource sections for various POSIX thread
(pthread) synchronisation primitives, namely for mutexes (including recursive
and reader-writer mutexes), condition variables, barriers, and joining of threads.
Since C++ threading support in DIVINE uses the libc++ library which uses
POSIX threads, these resource sections are also used for native C++ threading.

User-defined annotations can be given in one of the following categories:
exclusive section, waiting for an event, and waiting for function end. For user-
defined resource sections, DIVINE provides C and C++ interface which can be
found on the web page accompanying this publication.4 To make it possible to
specify which resource section types should be considered for analysis, we use
program instrumentation, which enables resource sections based on commandline
arguments (for more details see the accompanying web page).

The detection of nonterminating resource sections in DIVINE uses Tarjan’s
algorithm for finding strongly connected components. The algorithm runs on-the-
fly, which means that it generates the state space graph as needed, and therefore,
it can terminate before the entire state space graph is explored. The algorithm
finishes if it finds a fully accepting terminal strongly connected component, if it
discovers a safety error (to avoid the need for a separate safety verification), or
once the entire state space is explored.

5.4 Interaction with Other Features of DIVINE

Since DIVINE is a research tool not all the features implemented within the tool
are expected to run together. In this case there are even some other features of
DIVINE which interfere with local nontermination detection in a not so obvious
way.

Counterexamples When an error is found DIVINE has support to show a coun-
terexample and walk through it using an interactive simulator [3]. For safety
properties, this counterexample is a sequence of states which ends with an error.
For verification of properties described by LTL or Büchi automata (which are
partially supported by DIVINE), the counterexample is a lasso-shaped trace. For
nontermination, the part of the state space to be reported consists of a fully
accepting terminal strongly connected component and a path that leads to it.
However, it is not practical to output the information about the whole SCC, as
it can be large. For this reason, DIVINE gives only a trace to the first state of the

4 https://divine.fi.muni.cz/2019/lnterm

fully accepting terminal SCC (i.e., the first state from which end of the given
resource section instance is not reachable).

Spurious Wakeups Condition variables are often used in parallel programs to
block threads until some event occurs (e.g., a shared queue becomes non-empty).
They provide a function which blocks the current thread (wait) and a func-
tion which signals the condition variable and causes waiting threads to pro-
ceed (signal). In most implementations, including C++ standard APIs and
platform-specific APIs on Windows and Linux, wait is allowed to return before
it is signalled: this behaviour is called spurious wakeup and programmers must
take it into account when using condition variables.

To help with the discovery of bugs caused by spurious wakeup, DIVINE sim-
ulates spurious wakeup using nondeterministic choice. For nontermination de-
tection, it is necessary to ensure that any spurious wakeup does not hide non-
termination – we want to report resource section instances which can be only
left by spurious wakeup as nonterminating. This can be done by careful imple-
mentation of the wait function in DIVINE – it first nondeterministically decides
if a spurious wakeup will happen, and then, if it is not happening, it enters
resource section which waits for signal and cannot be woken up spuriously. If
the spurious wakeup is simulated, it behaves as if the thread was blocked and
allows other threads to run. Once the waiting thread is used again for generation
of successor states, it is unblocked and wait returns spuriously. The exhaustive
enumeration of possible thread interleavings ensures that other threads can run
arbitrarily long.

Data Nondeterminism and Symbolic Data To make it possible to verify programs
that depend on input data, DIVINE has support for symbolic values [10]. In an
analysis of programs with symbolic values, the computation can be split when
a branch depends on a symbolic value. This splitting can cause problems for
nontermination detection if leaving some resource section instance requires a
particular value of an input variable. Therefore, in the presence of symbolic
data, nontermination checking might miss some instances of nontermination.
We defer this problem to future work.

Relaxed Memory Models DIVINE has support for analysis of parallel programs
under the x86-TSO memory model of Intel and AMD CPUs [14], which allow
the program to exhibit behaviour not present under the interleaving semantics
of threads. One of the main problems in interaction between nontermination and
relaxed memory is that relaxed memory models over-approximate the possible
behaviours of the system to cover all possibilities of contemporary processors of
a given architecture. As nontermination is checking for absence of termination,
it can spuriously hide nontermination if the state space of the program is over-
approximated. Again, we defer this problem to future work.

100 101 102 103 104
100

101

102

103

104

safety [s]

lo
ca

l
n
o
n
te

rm
.

[s
]

Wall Time (in seconds)

103 104

103

104

safety [MB]

lo
ca

l
n
o
n
te

rm
.

[M
B

]

Memory Used (in megabytes)

Fig. 6. Scatter plots which compare local nontermination detection with safety check-
ing as implemented in DIVINE. Please note that both axes use a logarithmic scale.
The dashed and dotted lines in wall time graphs signify 10× and 100× difference re-
spectively. For graphs of memory usage, the dotted lines signify 3× difference and the
dashed 10× difference. Green squares correspond to benchmarks which were error-less
in both modes and blue circles correspond to benchmarks which contained errors in
both cases. Red triangles correspond to benchmarks which contained a nonterminating
section. The crosses on the outer edge of the plot correspond to timeouts and out-of-
memory errors. All the failures for local/global nontermination were due to timeouts,
benchmarks which failed with out-of-memory did so in all cases.

6 Evaluation

To our best knowledge there is no suitable benchmark set that would cover termi-
nation in parallel programs, therefore, we had to develop a suitable benchmark
on our own. We naturally wanted to analyse performance of our verification
method on real-world data structures. Unfortunately, it is hard to reuse any ex-
isting real-world test cases of parallel data structures for verification, as these
tests are usually developed as stress tests. Stress tests use large amount of data
and are supposed to be run for a long time in order to maximise a chance that
a parallelism-related bug is found during the testing period. For the purpose of
application of formal verification tool such as DIVINE, the mentioned approach
to testing of parallel programs is inappropriate. Since a model checker explores
systematically all interleavings of the program within a single execution, further
repeated executions, such as the ones within a stress test, are useless and only
add to the complexity of verification task. For these reasons, the tests we included
in our benchmark are tests we created or adapted and modified specifically for
the purpose of nontermination detection we wanted to evaluate.

To preserve some diversity at least, we opted for the following tests to be
included in our benchmark. First, to cover some real-world scenarios, we created

101 103 105

101

103

105

safety [# of states]

lo
ca

l
n

o
n
te

rm
.

[#
of

st
a
te

s]

Number of states

Fig. 7. A comparison of state space sizes
for local nontermination and safety. The
dashed and dotted lines signify 10× and
100× difference respectively. The mean-
ing of the marks in the graph is the same
as in Figure 6.

some tests for the Thread library from widely used C++ Boost5 (35 test cases).
Second, we used some tests from DIVINE project itself (8 test cases), and finally
we developed a couple of specific tests for small programs demonstrating be-
haviour of local nontermination with various synchronisation primitives (16 test
cases). Overall, the benchmark covered usage of lockfree and mutex guarded par-
allel data structures (e.g. parallel queues), synchronised variables, less-used syn-
chronisation primitives such as reader-writer locks, or a single-producer-single-
consumer queue and the parallel hashset from [4].

To evaluate our verification approach we let each test run with a 4 hours time-
out and 16 GB memory limit. We measured runtime and memory requirements
for the three following configurations of our tool:

safety A baseline configuration, in which the tool merely generates the state
space of the program and checks for the standard safety issues, such as asser-
tion violation, invalid memory access, etc. In this mode no nontermination
can be detected.

local nontermination The configuration in which the local nontermination
resource section detection is used. Under this configuration, the state space
of the original program is expanded with every entrance to the resource
section as described in Section 4.

global nontermination The configuration that treats the whole program as a
single resource section and detects if it terminates according to Definition 1.
Since this configuration does not introduce additional nondeterminism, the
state space of the program is roughly the same size as for safety.

The difference between local and global nontermination configurations is basi-
cally in the shape of the state space; both use the same algorithm (Tarjan’s
algorithm for SCC decomposition).

5 https://www.boost.org/doc/libs/1_69_0/doc/html/thread.html

Comparison of safety and local nontermination can be seen in Figure 6. We
evaluate wall time and memory consumption – in practice heavy duty tools like
DIVINE are likely to be used in long-running overnight tests (preferably only
if anything relevant for the test changed since the last run), therefore longer
runtimes might not be a big problem up to some point, but it is important to
test that the verification tasks fit in some reasonable amount of memory. As
we can see, the time overhead of local nontermination configuration is quite
significant (up to 59×) especially for larger programs which are correct. As for
memory consumption, we can see that total overhead is less then threefold, which
is mostly due to the state space compression employed by DIVINE.

The wall time blow-up is due to extra nondeterminism introduced by active
resource sections – the state space can grow by a factor that is related to the
number of resource section instances encountered in the original state space.
Note that many resource sections are likely to be very short. For programs that
were invalid, i.e., contained some nonterminating resource sections, the verifica-
tion usually exited faster under local nontermination configuration than under
safety configuration, which means that once a nonterminating section is encoun-
tered, it is checked relatively quickly. Further insight into comparison of safety
and local nontermination can be seen in Figure 7, which compares sizes of state
space for these two configurations. Here, we can see that the overhead in the size
of state space is lower than the time overhead (less than 10×). The extra time
overhead is likely caused by inefficiencies in DIVINE. For example, when DIVINE
nondeterministically chooses from N values, it will re-execute instructions be-
tween the last remembered state and the point of the nondeterministic choice N
times.

Figure 8 shows a comparison of local nontermination with global nontermi-
nation and safety with global nontermination. Here, we can see that the global
nontermination behaves similarly to safety, with some time overhead caused by
the somewhat more involved algorithm. This is well in line with our expecta-
tions, as global nontermination does not introduce any extra nondeterminism
compared to safety and Tarjan’s algorithm runs in linear time with respect to
the size of the state space, and so does reachability. This further highlights that
the overwhelming part of the time overhead of local nontermination is in the
increase of state space size. It is important to note that local nontermination
can be applied to programs which run infinitely (but have finite state space) –
it can detect if there is a nonterminating resource section in such a program. As
state space size and memory consumption is almost the same for safety and for
global nontermination, we omit memory and state space size comparisons for
the later two pairs of configurations.

Errors Found No errors were found in the C++ Boost tests, on the other hand,
all the errors we artificially implanted in the test cases were found. As for the
errors which were not deliberately introduced in the tests, we have found one
error in a test of a lock-free queue from an older version of DIVINE. The test
was part of DIVINE’s test suite for a long time and was used to test that the
queue works when it is continuously fed with elements while keeping its size

100 101 102 103 104
100

101

102

103

104

global [s]

lo
ca

l
n
o
n
te

rm
.

[s
]

Wall Time (in seconds)

100 101 102 103 104
100

101

102

103

104

safety [s]

g
lo

b
a
l

n
o
n
te

rm
.

[s
]

Fig. 8. The first graph compares local nontermination checking with checking if the
whole program terminates (global nontermination). In this comparison, the red trian-
gles correspond to benchmarks which did not end, but for which all resource sections
terminated. Finally, in the second graph, we compare global nontermination checking
with safety. Here, the red triangles correspond to benchmarks which did not terminate
but were safe. See Figure 6 for the general description of the plot layouts.

bounded. This means that the test was deliberately non-terminating and the
intention was that all the operations executed by main loops of the test’s two
threads terminate, which was not the case – a variable which was supposed to
keep track of the size of the queue was not maintained properly, and therefore it
could have happened that the reader thread would wait indefinitely, attempting
to read from an empty queue which would never fill up. So far the test case
was run under DIVINE with safety algorithm only, therefore the error did not
manifest and remained undetected.

7 Conclusion

We have presented a novel approach to detection of parts of real-world programs
written in C and C++ which do not terminate. Our method allows for detection
of partial deadlocks (and livelocks) caused by misuse of synchronisation, but it is
not limited to any particular mode of parallel programming (such as lock-based
synchronisation, or programs with communication channels) and indeed allows
any combination of synchronisation allowed by C++ itself. To achieve this, it
is necessary to provide simple annotations for parts of the code which are to
be checked for termination. Our implementation in the DIVINE model checker
ships with these annotations already prepared for verification of programs which
use C++ blocking synchronisation primitives (mutexes, condition variables), or
similar synchronisation primitives from the POSIX threads library (pthreads).

Due to the universality of these synchronisation primitives, our annotations allow
for checking of most programs which use blocking synchronisation out of the box.
For lock-free programs, users have to annotate functions or blocks of code which
are required to be exited once they were entered.

We have implemented our technique in an open-source model checker DI-
VINE, and evaluated it on a set of benchmarks including our tests of the Thread
library from widely used C++ Boost. The evaluation shows that while time
overhead of local nontermination checking can be quite significant (up to 59×
compared to safety checking on our benchmarks), the memory overhead is quite
modest (under 3×). During the evaluation, we have discovered a hidden bug that
remained in the code for a couple of years, even though the code was subject to
intensive safety checking.

Our technique enables checking nontermination in parallel programs, includ-
ing detection of partial deadlocks and livelocks, and it supports cases when
infinitely-running programs contain sections which are supposed to terminate
but do not terminate – we believe that even the overhead shown in our evalu-
ation is worth paying for the additional guarantees over safety checking. While
related to verification of properties written in temporal logics such as CTL*, our
technique cannot be subsumed into CTL* verification, as CTL* cannot quantify
over objects which can be created while the program runs.

For future work, it is crucial to further investigate interactions between non-
termination checking and relaxed memory, and nontermination and symbolic
data representation, as the presence of either of these features can lead to pro-
grams being reported as terminating even if they are not in the current situ-
ation. Nevertheless, even in the presence of relaxed memory or symbolic data,
any reported nonterminating section of the program is indeed a case when the
program cannot proceed past the given point. We would also like to investigate
better algorithms for detecting local nontermination that might avoid adding
nondeterminism to the program under analysis.

References

1. Rahul Agarwal, Saddek Bensalem, Eitan Farchi, Klaus Havelund, Yarden Nir-
Buchbinder, Scott D Stoller, Shmuel Ur, and Liqiang Wang. Detection of deadlock
potentials in multithreaded programs. IBM Journal of Research and Development,
54(5):3–1, 2010.

2. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-
tation and Mind Series). The MIT Press, 2008.

3. Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera, Henrich Lauko,
Jan Mrázek, Petr Ročkai, and Vladimı́r Štill. Model checking of C and C++ with
DIVINE 4. In Automated Technology for Verification and Analysis, volume 10482
of LNCS, pages 201–207. Springer, 2017.

4. Jǐŕı Barnat, Petr Ročkai, Vladimı́r Štill, and Jǐŕı Weiser. Fast, dynamically-sized
concurrent hash table. In Model Checking Software (SPIN 2015), volume 9232 of
Lecture Notes in Computer Science, pages 49–65. Springer International Publish-
ing, 2015.

5. Saddek Bensalem and Klaus Havelund. Scalable dynamic deadlock analysis of
multi-threaded programs. Parallel and Distributed Systems: Testing and Debug-
ging, 2005, 2005.

6. Dirk Beyer. Automatic verification of C and java programs: SV-COMP 2019. In
Proc. TACAS, part 3, LNCS 11429, pages 133–155. Springer, 2019.

7. Yan Cai and W. K. Chan. Magiclock: Scalable detection of potential deadlocks in
large-scale multithreaded programs. IEEE Transactions on Software Engineering,
40(3):266–281, March 2014.

8. Sagar Chaki, Edmund Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant
Sinha. Concurrent software verification with states, events, and deadlocks. Formal
Aspects of Computing, 17(4):461–483, Dec 2005.

9. Claudio Demartini, Radu Iosif, and Riccardo Sisto. A deadlock detection tool for
concurrent java programs. Software: Practice and Experience, 29(7):577–603, 1999.

10. Henrich Lauko, Petr Ročkai, and Jǐŕı Barnat. Symbolic computation via program
transformation. In Theoretical Aspects of Computing – ICTAC 2018, pages 313–
332, Cham, 2018. Springer International Publishing.

11. Nicholas Ng and Nobuko Yoshida. Static Deadlock Detection for Concurrent Go
by Global Session Graph Synthesis. In Proceedings of the 25th International Con-
ference on Compiler Construction, CC 2016, pages 174–184, New York, NY, USA,
2016. ACM.

12. James R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1997.

13. Petr Ročkai, Vladimı́r Štill, Ivana Černá, and Jǐŕı Barnat. DiVM: Model checking
with LLVM and graph memory. Journal of Systems and Software, 143:1–13, 2018.
https://divine.fi.muni.cz/2017/divm/.

14. Vladimı́r Štill and Jǐŕı Barnat. Model Checking of C++ Programs Under the
x86-TSO Memory Model. In Formal Methods and Software Engineering, pages
124–140, Cham, 2018. Springer International Publishing.

